

Hydraulic structures. Dams and reservoirs Elements of dam engineering -2

Assoc. Prof. Maria Mavrova University of Architecture, Civil Engineering and Geodesy - Sofia

Sofia winter School 29 November – 10 December 2021 Date: 6 December 2021

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

University of Nis

www.swarm.ni.ac.rs

Strengthening of master curricula in water resources management for the Western Balkans HEIs and stakeholders

Project number: 597888-EPP-1-2018-1-RS-EPPKA2-CBHE-JP

Q1: Elements of dam engineering

Q1: Elements of dam engineering

1. Historical perspective

- 2. Structural philosophy and types of dams
- 3. Spillways, outlets and ancillary works

4. Site assessment and selection of type of dam

5. Loads on dams

Embankment dam types and characteristics

earthfill or rockfill dams.

(a) Homogenous with toe-drain:

small secondary dams

m = 2.0-2.5

(b) Modern homogeneous with internal chimney drain m = 2.5-3.5

(c) Thin central clay core: m = 2.5-3.5

(d) Central concrete core: smaller dams - obsolescent m = 2.5-3.5

(e) Wide rolled clay core: with transitions zones and drains: ! base drain m = 2.5-3.5

(f) Earthfil-rockfill with central rolled clay core:

zoned with transitions and drains

m = 1.6-2.0

Principal variants of rockfill embankment dams

(a) Central rolled clay core m = 1.6-2.0

Principal variants of rockfill embankment dams

(b) Inclined rolled clay core m = 1.6-2.0

Principal variants of rockfill embankment dams

(c) Decked: upstream asphaltic or concrete membrane m = 1.6-2.0

Principal variants of rockfill embankment dams

(d) Central asphaltic membrane m = 1.6-2.0

Dam	State	Constructed (vear)	Height (m)	Volume of dam $m^3 \times 10^3$	Volume of reservoir $m^3 \times 10^6$
	otate	() ()	()		
I. Rogun*	Tajikistan	(?)	335	75,900	13,300
2. Nurek	Tajikistan	1980	300	58,000	10,500
3. Chicoazen (Manuel Torres)	Mexico	1980	261	15,370	1613
4. Tehri	India	2006	261	22,750	2600
5. Alberto Lleras (Guavio)	Colombia	1989	243	17,755	787
6. Mica	Canada	1973	242	32,111	24,700
7. La Esmeralda	Colombia	1976	237	11,400	760
9. Oroville	USA	1968	230	59,635	4297
10. Irape	Brazil	2006	208	10,300	
II. Keban	Turkey	1974	207	15,586	30,600

Table 11.1 Earth-rock dams higher than 200 m (* under construction).

Advantages of the embankment dams

- the suitability to sites in narrow and wide valleys and relatively steep sided gorges, too
- applicability to a different foundation conditions, from rock to soft soils
- the use of natural materials, minimizing the need to import or transport large quantities of materials or cement to the site;
- The construction process is highly mechanized;
 The most important disadvantage include damage
 - or destruction by overtopping !!!

Batak Dam

Batak Dam

Type - earthfill dam with stone membrane Year of building – 1959 Hight of the dam – 35 m

Length of the dam crest -300 m Total volume $-310*10^{6}$ m³ Catchment area -463,39 km²

Belmeken Dam

Type - rockfill dam Year of building – 1974 Hight of the dam – 88,2 m Length of the dam crest – 737,5 m Total volume – 144*10⁶ m³ Catchment area – 219 km²

Aleksander Stamboliyski Dam

Aleksander Stamboliyski Dam

 ITELENTAL

 1.1200 CALCENATA

 2.0200 ERUINATE

 1.810 ORA CENARATA

 2.0200 ERUINATE

 1.810 ORA CENARATA

 1.810 ORA CENARATA

Type - stone masonry dam Year of building – 1953 Hight of the dam – 66 m Length of the dam crest – 300 m Total volume – 205,569*10⁶ m³ Catchment area – 1478 km²